A Discriminative Graph-Based Parser for the Abstract Meaning Representation

نویسندگان

  • Jeffrey Flanigan
  • Sam Thomson
  • Jaime G. Carbonell
  • Chris Dyer
  • Noah A. Smith
چکیده

Abstract Meaning Representation (AMR) is a semantic formalism for which a growing set of annotated examples is available. We introduce the first approach to parse sentences into this representation, providing a strong baseline for future improvement. The method is based on a novel algorithm for finding a maximum spanning, connected subgraph, embedded within a Lagrangian relaxation of an optimization problem that imposes linguistically inspired constraints. Our approach is described in the general framework of structured prediction, allowing future incorporation of additional features and constraints, and may extend to other formalisms as well. Our open-source system, JAMR, is available at:Meaning Representation (AMR) is a semantic formalism for which a growing set of annotated examples is available. We introduce the first approach to parse sentences into this representation, providing a strong baseline for future improvement. The method is based on a novel algorithm for finding a maximum spanning, connected subgraph, embedded within a Lagrangian relaxation of an optimization problem that imposes linguistically inspired constraints. Our approach is described in the general framework of structured prediction, allowing future incorporation of additional features and constraints, and may extend to other formalisms as well. Our open-source system, JAMR, is available at: http://github.com/jflanigan/jamr

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Map Dependency Parses to Abstract Meaning Representations

Abstract Meaning Representation (AMR) is a semantic representation language used to capture the meaning of English sentences. In this work, we propose an AMR parser based on dependency parse rewrite rules. This approach transfers dependency parses into AMRs by integrating the syntactic dependencies, semantic arguments, named entity and co-reference information. A dependency parse to AMR graph a...

متن کامل

An Incremental Parser for Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a semantic representation for natural language that embeds annotations relatedMeaning Representation (AMR) is a semantic representation for natural language that embeds annotations related to traditional tasks such as named entity recognition, semantic role labeling, word sense disambiguation and co-reference resolution. We describe a transition-based pa...

متن کامل

Parsing English into Abstract Meaning Representation Using Syntax-Based Machine Translation

We present a parser for Abstract Meaning Representation (AMR). We treat Englishto-AMR conversion within the framework of string-to-tree, syntax-based machine translation (SBMT). To make this work, we transform the AMR structure into a form suitable for the mechanics of SBMT and useful for modeling. We introduce an AMR-specific language model and add data and features drawn from semantic resourc...

متن کامل

Robust Incremental Neural Semantic Graph Parsing

Parsing sentences to linguisticallyexpressive semantic representations is a key goal of Natural Language Processing. Yet statistical parsing has focussed almost exclusively on bilexical dependencies or domain-specific logical forms. We propose a neural encoder-decoder transition-based parser which is the first full-coverage semantic graph parser for Minimal Recursion Semantics (MRS). The model ...

متن کامل

A Transition-based Algorithm for AMR Parsing

We present a two-stage framework to parse a sentence into its Abstract Meaning Representation (AMR). We first use a dependency parser to generate a dependency tree for the sentence. In the second stage, we design a novel transition-based algorithm that transforms the dependency tree to an AMR graph. There are several advantages with this approach. First, the dependency parser can be trained on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014